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1 Introduction
In the theoretical studies of crack problems, several differ

electric boundary conditions at the crack surfaces in piezoele
materials have been proposed by numerous researchers~@1–4#!.
However, these solutions contain stress and electric displace
singularity. This is not reasonable according to the physical
ture. To overcome the stress singularity in the classical ela
theory, Eringen@5# used the nonlocal theory to study the state
stress near the tip of a sharp line crack in an elastic plate subje
to antiplane shear. The solution did not contain any stress sin
larity. Recently, the same problems have been resolved in Zh
papers~@6#! by using the Schmidt method.

In this paper, the behavior of two collinear symmetric crac
subjected to the antiplane shear loading in the piezoelectric m
rials is investigated by using the Schmidt method and the nonl
theory for permeable crack surface conditions. The traditio
concept of linear elastic fracture mechanics and the nonlo
theory are extended to include the piezoelectric effects. As
pected, the solution in this paper does not contain the stress
electric displacement singularity at the crack tip.

2 Basic Equations of Nonlocal Piezoelectric Materials
As discussed in@7#, for the antiplane shear problem, the bas

equations of linear, nonlocal piezoelectric materials can be wri
as follows:
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tkz~X!5E
V
a~ uX82Xu!@c44w,k~X8!1e15f ,k~X8!#dV~X8!,

~k5x,y! (3)

Dk~X!5E
V
a~ uX82Xu!@e15w,k~X8!2«11f ,k~X8!#dV~X8!,

~k5x,y! (4)
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where the only difference from classical elastic theory is that
the stress and the electric displacement constitutive Eqs.~3!–~4!,
the stresstzk(X) and the electric displacementDk(X) at a pointX
depends onw,k(X) andf ,k(X), at all points of the body.w andf
are the mechanical displacement and electric poten
c44,e15,«11 are the shear modulus, piezoelectric coefficient, a
dielectric parameter, respectively.a(uX82Xu) is the influence
function. As discussed in the papers~@5,6#!, a(uX82Xu) can be
assumed as follows:

a~ uX82Xu!5
1

p
~b/a!2 exp@2~b/a!2~X82X!~X82X!# (5)

whereb is a constant anda is the lattice parameter.

3 The Crack Model
Consider an infinite piezoelectric plane containing two colline

symmetric permeable cracks of length 1-b along thex-axis. 2b is
the distance between two cracks. The boundary conditions of
present problem are

tyz
~1!~x,01!5tyz

~2!~x,02!52t0 , b<uxu<1 (6)

Dy
~1!~x,01!5Dy

~2!~x,02!, f~1!~x,01!5f~2!~x,02!, uxu<`
(7)

w~1!~x,01!5w~2!~x,02!50, 0,uxu,b,1,uxu (8)

w~k!~x,y!5f~k!~x,y!50, for ~x21y2!1/2→`, ~k51,2!.
(9)

Note that all quantities with superscriptk(k51,2) refer to the
upper half-plane and the lower half-plane.

As discussed in@7#, the general solutions of Eqs.~1!–~2! satis-
fying ~9! are, respectively,

w~1!~x,y!5
2

p E
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`

A1~s!e2sy cos~xs!ds,
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e15
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whereA1(s), B1(s), A2(s), B2(s) are to be determined from th
boundary conditions.

For solving the problem, the gap functions of the crack surf
displacements and the electric potentials are defined as follow

f w~x!5w~1!~x,01!2w~2!~x,02! (12)

f f~x!5f~1!~x,01!2f~2!~x,02!. (13)

Substituting Eqs.~10!–~11! into Eqs.~3!–~4!, ~12!–~13!, applying
the Fourier transform and the boundary conditions~6!–~8!, it can
be obtained as

1

p E
0

`

s f̄w~s!erfc~«s!cos~sx!ds5
t0

c44
, b<uxu<1 (14)

1

p E
0

`

f̄ w~s!cos~sx!ds50, 0,uxu,b, 1,uxu,` (15)

and f̄ f(s)50, f f(x)50, for all s and x. «5a/2b, erfc(z)51
2F(z), F(z)52/Ap*0

z exp(2t2)dt.

4 Solution of the Triple Integral Equations
As discussed in@6#, the Schmidt method~@8#! can be used to

solve the triple-integral Eqs.~14!–~15!. The gap functions of the
crack surface displacement can be represented by the follow
series:

f w~x!5(
n50

`

anPn
~1/2,1/2!S x2
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,

for b<x<1, y50 (16)

f w~x!50, for 0,x,b, 1,x, y50 (17)

wherean is unknown coefficients to be determined andPn
(1/2,1/2)

3(x) is a Jacobi polynomial. The Fourier transformation of E
~16! is
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`

anQnGn~s!
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11b

2 D , n50,2,4,6, . . .

~21!~n11!/2 sinS s
11b

2 D , n51,3,5,7, . . .

(19)

whereG(x) and Jn(x) are the Gamma and Bessel functions,
spectively. By substituting Eq.~18! into Eqs.~14!–~15!, respec-
tively, Eq. ~15! can be automatically satisfied. Then the remain
Eq. ~14! reduces to the form

(
n50

`

anQnE
0

`

erfc~«s!Gn~s!Jn11S s
12b

2 D cos~sx!ds5
p

c44
t0 .

(20)

Equations~20! can now be solved for the coefficientsan by the
Schmidt method~@8#!.
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5 Numerical Calculations and Discussion
tyz andDy along the crack line can be expressed as

tyz5tyz
~1!~x,0!

52
c44

p (
n50

`

anQnE
0

`

erfc~«s!Gn~s!Jn11S s
12b

2 D cos~xs!ds

(21)

Dy5Dy
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52
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p (
n50

`

anQnE
0

`

erfc~«s!Gn~s!Jn11S s
12b

2 D cos~xs!ds

5
e15

c44
tyz

~1!~x,0!. (22)

So long as«Þ0, the semi-infinite integration and the series in Eq
~20! is convergent for any variablex. Equations~21! and~22! give
finite stress and electric displacement all alongy50, so there are
no stress and electric displacement singularity at the crack
The results are plotted in Figs. 1 and 2. From the results,
dimensionless stress field is found to be independent of the m
rial parameters. They just depend on the length of the crack
the lattice parameter. However, the electric displacement fiel
found to depend on the stress loads, the shear modulus, the le
of the crack, the lattice parameter and piezoelectric coeffic
except the dielectric parameter«11. Contrary to the impermeable
crack surface condition solution, it is found that the electric d
placement for the permeable crack surface conditions is m
smaller than the results for the impermeable crack surface co
tions.

Fig. 1 The stress along the crack line versus x for bÄ0.1,
aÕ2bÄ0.0005 „PZT-5H…

Fig. 2 The electric displacement along the crack line versus x
for bÄ0.1, aÕ2bÄ0.0005 „PZT-5H…
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